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Summary. In a first step, we examine the concept of magnetic orbital which is very useful to treat the

mechanism of superexchange. After that, we recall the general broad lines of the first historical model

proposed by Anderson. In a second step, we develop a new general treatment for superexchange, in the

case of the centrosymmetrical model AXB, where A and B are metal cations and X a common bridging

ligand (with here, for simplification, A¼B, without transfer between cations). It allows one to retrieve

the expression of exchange energy J vs. key molecular integrals, as respectively proposed by several

authors such as Anderson on the one hand, Hay, Thibeault, and Hoffmann on the other one, and, finally,

Kahn and Briat. This model may be easily generalized to the case where a transfer does exist between

both cations, with A¼B or A 6¼B.

Keywords. Magnetic orbital; Superexchange; Anderson model; Goodenough-Kanamori rules; Hay-

Thibeault-Hoffmann model; Kahn-Briat model.

The Concept of Magnetic Orbital [1]

Let us consider the simplest case of an A–B bimetallic system in which A and B are
metal ions surrounded by their ligands, with a common ligand between A and B. In
addition the ground states of A and B are both characterized by one unpaired
electron. Thus, the interaction between the single-ion doublet states gives rise to
molecular singlet and triplet states, respectively, and the singlet-triplet energy gap
is J. J is a physical observable and not a parameter closely linked to the phenom-
enological model used to interpret experimental data. Under these conditions, we
can write the general phenomenological Hamiltonian (Eq. (1)).

Hphen ¼ �JSA � SB þ SAðLÞSB þ D � ðSA� SBÞ þ � � � ð1Þ
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J is a scalar, (L) is the anisotropy tensor, and D is the well-known Dzialoshinski-
Moriya vector. Thus, the first term in Eq. (1) leads to a singlet–triplet splitting, the
second term splits the triplet state, and the third one couples the singlet and triplet
states. As previously seen, the phenomenological Hamiltonian given by Eq. (1)
shows eigenvalues which correspond to the experimental low-lying states but does
not provide any information on the microscopic mechanisms really involved so that
it has no predictive character.

As a consequence, it becomes necessary to use a microscopic Hamiltonian, i.e.,
an Hamiltonian taking into account the kinetic energy of the unpaired electrons Ti

on A and B, the electron-cores potential energies Vi, and the electrostatic interaction
between the electrons of the system (Eq. (2)) where rij¼ jri � rjj is an interelec-
tronic distance and hso is the spin-orbit coupling Hamiltonian (cf. Eq. (75) in I).

Hmicro ¼
Xn

i¼1

ðTi þ ViÞ þ
Xn

i¼1

X
i< j

e2

4�"0rij

þ hso ð2Þ

In this article, we shall consider hso¼ 0. Of course, this Hamiltonian seems less
easy to handle than the phenomenological one given by Eq. (1). However, the idea
of comparing the eigenvalues of Hmicro and Hphen may be maintained owing to
justified approximations. In other words, each orbital model employed for finding
the eigenvalues of Hmicro must be precisely characterized by the nature of the
chosen approximations.

When A and B are without interaction, the wave functions describing A and B
are simply given by Eq. (3) where þ holds for the singlet and � for the triplet.

F�ðr1; r2Þ ¼
1ffiffiffi
2

p FAðr1ÞFBðr2Þ �FAðr2ÞFBðr1Þ½ � ð3Þ

When the interaction between A and B is no longer zero but remains weak
enough, the Heitler-London [2] function F�(r1, r2) given by Eq. (3) is a good first-
order approximation to describe the two low-lying states thermally populated and
the overlap S ¼ hFAðr1ÞjFBðr1Þi may appear in the normalization coefficient. Then,
the semi-localized orbitals FA and FB, which will describe the magnetic properties
of A–B, are called magnetic orbitals. They are, in principle, non-orthogonal and the
overlap S plays a key role in the description of the interaction between A and B.
These non-orthogonal magnetic orbitals (NMO) have been said natural by Girerd
et al. [3]. For most of authors, the magnetic orbitals may be rigorously orthogonal
by construction (OMO) [4]. In the case on which we focus, non-orthogonal mag-
netic orbitals (NMO) will be denoted FA and FB whereas orthogonal magnetic
orbitals will be F0

A and F0
B.

FA and FB are chosen as the highest occupied molecular orbitals for the A (or
B) fragment. Thus, FA and FB are nothing but the eigenfunctions of one-electron
local Hamiltonians [5, 6]. By definition, they are centred on each metal ion and
partially delocalized towards the surrounding ligands.

When FA and FB are orthogonalized through a L€oowdin procedure [7] Eq. (4) is
obtained.

F0
A

F0
B

� �
¼ 1 S

S 1

� ��1=2 FA

FB

� �
ð4Þ
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F0
A is still localized on centre A, with a residual contribution on centre B, outside

the bridging region common to A and B, and increasing with the overlap [3]. F0
A

and F0
B may be derived by another process. We start from the two-highest singly

occupied molecular orbitals ’þ and ’� for the low-lying triplet state of A–B. When
A¼B, then F0

A and F0
B are given by Eq. (5) [4].

F0
A ¼ 1ffiffiffi

2
p ð’þ þ ’�Þ; F0

B ¼ 1ffiffiffi
2

p ð’þ � ’�Þ ð5Þ

They are equivalent to the Wannier functions used by Anderson for periodic lattices
(see below) [4]. Under these conditions, OMOs derived by Eqs. (4) and (5) are not
strictly equivalent, simply due to the fact that the one-electron Hamiltonian of A–B
is not the sum of the local Hamiltonians for A and B, considered separately. How-
ever, both types of OMOs show the same defect of localization. In addition, from a
practical point of view, the OMO approach leads to much simpler calculations, as
shown by Anderson [4] whereas the NMO approach is closer to the real mechanism
involved in the nature of interaction and will favour the use of more realistic
molecular integrals. From now and for clarity, magnetic orbitals will be written
without the prime (0) notation.

Anderson Model for Superexchange

According to Anderson [4] superexchange acquired its name because of the rela-
tively large distances, occupied by normally diamagnetic ions, radicals or, mole-
cules, over which the exchange effect often was found to act. In other words (i) the
overlap of the wave functions associated with the two magnetic centres separated

Fig. 1. ‘‘Ground’’ and ‘‘excited’’ configurations in the original superexchange process, for the

sequence Mn–O–Mn appearing in the crystallized compound MnO (from Ref. [4])

Magnetic Orbitals and Mechanisms of Exchange II 1015



by a non-magnetic bridge (or ligand) is quasi negligible [8]; (ii) the ligand wave
function is slightly modified by the presence of the magnetic ions; and (iii) the
corresponding modification confers a magnetic character which may give exchange
interactions with other ions. Under these conditions, Anderson [9] has considered
the simplest modification: the transfer of one of the ionic ligand electrons into the
external shell of the magnetic ion. For instance, in the well-known case of d shells,
this transfer could only take place into an empty d orbital. This transfer notion has
been illustrated by measurements of the hyperfine interaction of the ligand nuclear
spin with the electronic spins of the ‘‘magnetic’’ ion. Indeed these results have
allowed to demonstrate graphically that the ligand wave function is partially mag-
netic, with the expected degree [10–13].

Before interacting with the electron of the ligand orbital, each unpaired elec-
tron d belonging to each magnetic centre is artificially characterized by a spin
parallel to the corresponding spin of ligand. Both electrons d finally interact on
each side of ligand via this bridge by an assumed antiferromagnetic mechanism,
thus giving rise to antiferromagnetism. The diagram of Fig. 1 gives an illustration
of the process leading to superexchange.

1. Description of Anderson Model

Of course, for treating analytically superexchange, the choice of wave functions is
fundamental and finally conditions the important aspect of overlap. The whole
problem concerns the interaction of an electron with the rest of the lattice. This
aspect is taken into account through the ligand field theory. As experimentally
shown by the comparative study of hyperfine interactions with ligand ion nuclei
between dilute and concentrated versions of the same compound, the exchange
effects between one magnetic ion and the other ones do not strongly disturb the
ligand field wave function. Thus, there is a well-defined wave function character-
izing each magnetic ion, not changed drastically by its magnetic surrounding.

As a consequence, Anderson has chosen two levels of sophistication for treat-
ing the electrons belonging to the magnetic ions and the ligand, respectively. The
first level consists in treating the extra electrons in terms of simple one-electron
Hartree-Fock functions while the second is treating them as excitations of a many-
body system. Thus, Anderson considers a periodic potential due to the nuclei and
the ‘‘core’’ electrons, whose wave functions may be taken as given quantities, not
expected to change very much as excitations occur in the ‘‘magnetic’’ electron
system. Such core electrons (including those of the involved ligand) play two
important roles: (i) they contribute to the self-consistent field and (ii) the ‘‘mag-
netic electrons’’ wave functions must be orthogonalized to all the cores. At this
step, one must note that true spin polarization of the cores is considered as a minor
effect, in contrast to the situation of the free (or ‘‘s’’) electrons in the Zener-
Ruderman-Kittel exchange via free electrons in metals.

Under these conditions, the Coulomb interaction between the electrons
involved in the collective wave function is introduced by the bias of a mean-field
approximation (Hartree-Fock approximation). As previously seen in introduction,
an assumption concerning the starting magnetic configuration is required:
Anderson has chosen a ferromagnetic configuration. This aspect could be question-
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able but Kondo has shown that there are no pernicious effects [14]. Then the
secular problem may be solved self-consistently. Thus, the ligand field wave func-
tion ’i(r) is assumed to be a solution of the Hartree-Fock equations (Eq. (6)).

� �h2

2m
=2’iðrÞ þ VðrÞ þ

X
j

e2

4�"0

ð
dr0

j’jðr0Þ2j
jr� r0j

 !
’iðrÞ

"

� e2

4�"0

X
j

ð
dr0

’�j ðr0Þ’iðr0Þ
jr� r0j

 !
’jðrÞ

#
¼ 2 i’iðrÞ ð6Þ

Note that the integrals are also spin sums and the j sums may extend over all
occupied functions including i. At this step, due to the experimental reasons pre-
viously evoked, we may recall that one can neglect the relative arrangement of the
‘‘magnetic’’ electrons. In this purpose Anderson has adopted the Wigner-Seitz
scheme of removing the ‘‘magnetic’’ electron charge from the cell in which it finds
itself (this scheme must be understood as a ‘‘trick’’ to find usable wave functions).
Then the equation for the ligand field wave function may be simply rewritten
artificially as Eq. (7).

� �h2

2m
=2’kðrÞþVðrÞ’kðrÞþ

e2

4�"0

X
k0

ð
dr0

j’k0 ðr0Þj2

jr� r0j

 !
r and r0 not in
the same cell

’kðrÞ

þ e2

4�"0

X
j

ð
dr0

j’jðr0Þj2

jr� r0j ’kðrÞ�
ð

dr0
’�j ðr0Þ’kðr0Þ

jr� r0j ’jðrÞ
 !

ligands
and cores

¼ 2ðkÞ’kðrÞ

ð7Þ
Since Eq. (7) has the periodicity of the lattice, its solutions are Bloch waves ’k with
wave vectors k. The most important properties of these functions are deducible
from the quantity 2 (k). It contains both the crystal field effects and the kinetic
energy. To each d band labelled m, non-degenerate and well separated with respect
to the other bands, corresponds a particular energy spectrum 2m(k). Since 2m(k)
is periodic it may be expanded in a Fourier series (Eq. (8)) where the ss are
fundamental translations of the lattice.

2mðkÞ ¼ am þ
X
s

bmðsÞ expð�ik � sÞ ð8Þ

Now the final Bloch solutions of Eq. (7) may be unitary transformed to a new
orthonormal set composed of Wannier functions (Eq. (9)) where N is the number
of lattice sites involved.

’mðr� nÞ ¼ 1ffiffiffiffi
N

p
X
k

’m
k ðrÞ expðik � nÞ ð9Þ

Thus, the effect of the self-consistent field on the localized functions ’m is
obtained by applying Eqs. (8) and (9) in the following Schr€oodinger equation
(Eq. (10)).

HSch’mðr� nÞ ¼ am’mðr� nÞ þ
X
s

bmðsÞ’mðr� ðnþ sÞÞ ð10Þ
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am represents the crystal field parameter, this crystal field separating the different d
levels m. bm(s) appears as a transfer integral representing the effect of the kinetic
energy (responsible of the electron motion through the lattice). A more rigorous
discussion [15] has allowed to take into account other d bands m0 and Eq. (10) may
be simply generalized as Eq. (11) where now the transfer integral bmm0(s) is given
by Eq. (12).

HSch’mðr� nÞ ¼ am’mðr� nÞ þ
X
m0;s

bmm0 ðsÞ’m0 ðr� ðnþ sÞÞ ð11Þ

bmm0 ðsÞ ¼
ð

dr’�mðr� nÞðT þ VÞ’m0 ðr� ðnþ sÞÞ ð12Þ

m and m0 thus label the corresponding orbitals, each one containing one electron.
Anderson has designated this contribution to exchange coupling as kinetic exchange,
simply due to the fact that, during the formation of the weak chemical bond char-
acterized by an antiferromagnetic effect, there is a gain in kinetic energy.

Interactions between magnetic electrons on the same ion core interact very
strongly and may show three forms:

(i) Two electrons belonging to the same ion may repel each other with an average
Coulomb energy called U which does not depend on their relative orbital or
spin functions (for d electrons U� 10 eV [16]). U is nothing but the energy
which keeps the electrons localized. In other words, each electron stays on its
own core exactly and the difference between the first excited state and the
ground one is precisely U.

(ii) When the unpaired electrons are in orthogonal orbitals the spins are cou-
pled parallel and the contribution to the exchange coupling is given by Eq. (13).

Jmm0ðpotentialÞ

¼
ð

dr dr0’�
mðr� nÞ’�

m0 ðr� nÞ e2

4�"0jr� r0j’m0 ðr0 � nÞ’mðr0 � nÞ ð13Þ

It is attractive because two electrons described by similar wave functions tend
to avoid each other through the Fermi hole which occurs when spins are
parallel, this hole being less repulsive when electrons are closer to each other.
Anderson has designated this contribution as potential exchange. In next sub-
section we shall give physical comments concerning the labels kinetic and
potential exchanges.

(iii) Small differences in the repulsive energies may also occur due to the relative
orientations of the orbitals involved, i.e., as shown by Eq. (14).ð

dr dr0j’m1
ðr� nÞj2 e2

jr� r0j j’m2
ðr0 � nÞj2

6¼
ð

dr dr0j’m3
ðrÞj2 e2

jr� r0j j’m4
ðr0Þj2 ð14Þ

These differences are the well-known Slater integrals which determine
how the orbital moments orient themselves, for a free ion. In a real crystal,
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there will always exist a competition between the crystal field parameters
(described by the ams) and integrals like those appearing in Eq. (14) which
will condition the ionic state.

Thus, superexchange occurs because the best Hartree-Fock orbitals are not the
Wannier functions of Eq. (9) when some of the spins are antiparallel to others. As
Anderson noted [4], when two neighbouring spins are parallel, their orbitals must
of course be orthogonal; when they are antiparallel, their spin functions are auto-
matically orthogonal and the orbitals may overlap each other. The gain of energy
has been calculated by Anderson [16] and Kondo [14], owing to perturbation
theory. For two antiparallel neighbours at a distance s we have from Eq. (11),
Eq. (15) where U > 0 is the Coulomb repulsion energy so that, for a single pair
of spins, Eq. (16) is obtained.

’mðr� nÞ ! ’mðr� nÞ þ
X

m0

bmm0 ðsÞ
U

’m0 ðr� n� sÞ

’m0 ðr� n� sÞ ! ’m0 ðr� n� sÞ þ
X

m

bmm0 ðsÞ
U

’mðr� nÞ ð15Þ

DEðparallel=antiparallelÞ ¼ � 2bmm0 ðsÞ2

U
ð16Þ

The effect is always antiferromagnetic and depends on the presence of half-filled
orbitals on the two involved ions, with non-vanishing bmm0s. Finally, Kondo [14]
and Anderson [16] have separately shown that, in spite of the fact that super-
exchange differs from true usual exchange, it is equivalent to an s1 � s2 coupling,
(Eq. (17)) so that the ‘‘kinetic’’ contribution to the exchange integral is given by
Eq. (18) and is characterized by a negative sign.

DH ¼
X
m;m0;
n;s

bmm0 ðsÞ2

U
� 1

2
1þ 2sm

n � sm0

nþs

� �
ð17Þ

Jmm0ðkineticÞ ¼ � 2bmm0 ðsÞ2

U
ð18Þ

It means that the energies of parallel spins (ferromagnetic arrangement) are not
affected but those of antiparallel spins (antiferromagnetic arrangement) are low-
ered. This is opposite to the true exchange effect where antiparallel spins are not
affected. The total exchange is finally J ¼ Jmm0ðpotentialÞ þ Jmm0ðkineticÞ, the conven-
tional writing of exchange Hamiltonian being �2JSA �SB.

2. Physical Comments and Improvements of the Model

We have just seen that Anderson has suggested that the ferromagnetic part be
called potential exchange and the antiferromagnetic one kinetic exchange [16].
These terms are only partially adequate. The first one takes into account the
Coulomb potential energy which plays a major role in this mechanism but ignores
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the fact that the extension of the Fermi hole is governed by the smoothness of the
wave functions which find their origin in the kinetic energy term. For the second
label, despite the contribution to the energy lowering which results from a partial
electron delocalization, it must be recalled that this comes in fact from the non-
vanishing term bmm0(s) which contains both kinetic and potential contributions.

These remarks allow one to point out the fundamental complexity of the exchange
problem. Indeed we deal with tiny (or at least very small) energy terms, generally
accessible through a chain of perturbation process. In addition, since any modifica-
tion of the wave functions simultaneously affects most of the contributions to the
Hamiltonian, it is not possible to strictly separate them via a variational process and
to specifically attribute to one of them any energy lowering. Finally, it must be empha-
sized that bmm0(s) contains the Coulomb electron-electron interactions as well as the
one-electron energy terms, since the self-consistent Hamiltonian involves the two-
particle energy through the effective mean-field interaction potential.

After the publication of Anderson’s initial model [9], experimental works [17]
have pointed out that superexchange could also lead to purely ferromagnetic spin
arrangements between magnetic centres. A first improvement to Anderson’s model
has consisted in considering the true polarization effects [18]. In addition, the
perturbation expansion has been examined at higher orders, in particular the case
of a delocalized orbital containing the unpaired electron and overlapping with an
empty orbital on a second metal ion. Intra-atomic coupling of the electrons in the
orthogonal metal orbitals leads to a ferromagnetic spin arrangement. This contri-
bution to the exchange integral is given by Eq. (19).

J0
mm0ðpotentialÞ ¼

bmm0 ðsÞ
U

� �2

Jðintra-atomicÞ ð19Þ

Calculations have given jJmm0ðkineticÞj>>Jmm0ðpotentialÞ so that, when both kinetic and
potential exchanges co-exist, the kinetic contribution is usually the largest one and
the resultant exchange coupling is antiferromagnetic. Ferromagnetic interactions
have been considered as resulting from the operation of Hund’s rules where the
unpaired electrons are delocalized into orthogonal orbitals on a common bridging
ligand. Only the exchange pathways involving overlaps between non-orthogonal
orbitals give rise to antiferromagnetism.

It early appeared that qualitative rules allowing the prediction of the nature of
the interaction between two magnetic centres A and B should be proposed accord-
ing to the symmetry of the AXB entity. From Anderson’s first paper [9], it was
suggested that superexchange between ions with d shells half filled or more might
be antiferromagnetic, with less ferromagnetic. However experimental contradic-
tions have rapidly appeared (for instance, with compounds containing Cr3þ ions
which are almost uniformly antiferromagnetic, with a d shell less than half full
[17]). A first step proposed by Anderson has involved the orientation of magnetic
orbitals in the entity AXB. Anderson’s rules suggest that there is a stronger inter-
action between two spins with a ligand directly between them in 180� position than
at right angles with respect to the ligand ion.

However a considerably more satisfactory system of semi-empirical rules has
been developed in the second part of the fifties by Goodenough [19] and most
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clearly stated by Kanamori [20]. These rules take into account the occupation of
the various d levels as recommended by ligand field theory. They are related to
Anderson’s prescription about the sign of superexchange energy. Finally, the angu-
lar relationship to the intermediate ligand ion does not play a major role. Under
these conditions the Goodenough-Kanamori rules are [4]:

(i) When the two ions have lobes of magnetic orbitals pointing toward each other
in such a way that the orbitals would have a reasonably large overlap integral,
the exchange is antiferromagnetic. There are several subcases:

1. When the lobes are dz2 -type orbitals in the octahedral case, particularly in
the ‘‘180� position’’ in which these lobes point directly toward a ligand and
each other, one obtains a large superexchange energy.

2. When dxy orbitals are in the 180� position to each other, so that they interact
via p� orbitals on the ligand, one again obtains antiferromagnetic super-
exchange.

3. In a 90� ligand situation, when one ion has a dz2 occupied and the other a dxy,
the p� for one is the p� for the other and one expects a strong overlap and
thus antiferromagnetic exchange.

(ii) When the orbitals are arranged in such a way that they are expected to be
in contact but to have no overlap integral – most notably a dz2 and a dxy in 180�

position where the overlap is zero by symmetry – the rule gives ferromagnetic
interaction (not as strong as the antiferromagnetic one in absolute value).

These two rules have explained almost the complete gamut of spin arrangements
encountered in a wide variety of compounds. At this step we may make the
following comments. (i) Antiferromagnetic superexchange effect can only arise
between two orbitals having a finite transfer integral b connecting them and the
exchange energy is proportional to b2 (cf. Eq. (18)). In other words, the two
orbitals must have the same symmetry in the region of overlap. (ii) If the orbi-
tals do not have the same symmetry so that b¼ 0 (orthogonality by symmetry),
one can expect a ferromagnetic exchange. Important applications have been
achieved for verifying these rules [21] as well as numerous regularities suggested
by theory [4].

A New General Treatment for the Superexchange Mechanism

In this part we develop a general formalism for the AXB centrosymmetrical model
system, where A and B are two magnetic centres with one unpaired electron each,
and X is a closed-shell diamagnetic bridge (or ligand). A first approach has been
previously given by Georges [22]. Under these conditions, let us start with the two-
particle Hamiltonian (Eq. (20)).

H ¼ T1 þ V1 þ T2 þ V2 þ
e2

4�"0r12

; r12 ¼ jr1 � r2j ð20Þ

The potentials V1¼V(r1) and V2¼V(r2) include all the nucleus and extra electron
contributions to the Coulomb field acting on electrons 1 and 2. In other words, we
operate in the framework of the Hartree-Fock approximation, i.e., the action of
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extra electrons over electrons 1 and 2 is taken into account through a mean-field
approximation.

1. Basic Assumptions

The potential operator V(r) commutes with any symmetry operator F. F forms a
double group G with the identity operation 1. Thus, as we deal with a two-electron
problem on both sides of ligand X, separately, the two low-lying states of the bonds
A–X and X–B are a spin singlet and a spin triplet of respective irreducible repre-
sentations (irreps) 1Gg and 3Gu. They are close enough in energy to both be popu-
lated at room temperature. In Fig. 2 we have reported the general shape of V(r) as
well as the energy diagram for the AXB model. The three atomic orbitals involved
are FA and FB centred on A and B, respectively, and FX centred on the bridge X
(the corresponding states are jAi, jBi, and jXi). FA, FB, and FX are assumed to
be real and are considered as starting (non-disturbed) wave functions, i.e., free
atomic wave functions which give a spatial description of each of the states jAi,
jBi, or jXi. For instance, FA and FB are cationic d-orbitals and FX is an anionic
(s or p) orbital.

We have the following conventions based on the symmetry problem, notably on
the fact that A and B are far apart and without interaction:

(i) The states are normalized but not orthogonal (except jAi and jBi) (Eq. (21)).

hAjAi ¼ 1; hBjBi ¼ 1; hXjXi ¼ 1; hAjBi ¼ hBjAi ¼ 0 ð21Þ
The fact that jAi and jBi are orthogonal (i.e., without overlap) simply means
that there is no bond between A and B (but this could be taken into account in
the present model). As noted after Eq. (20), only two unpaired electrons
belonging respectively to cations A and B participate to the creation of a bond
on each side of the central ligand X, the other electrons being considered as
passive. This is the active-electron approximation which is plainly justified
from an experimental point of view. Indeed, for numerous compounds (for
instance, for oxo- or fluoro-bridged compounds), the highest-occupied molec-
ular orbitals of the bridging ligands that interact with the metal ions are low in
energy compared to the cationic d orbitals. In addition they are well separated
from other metal or ligand occupied orbitals.

Fig. 2. Energy diagram for the periodic AXB model in the particular case of similar magnetic centres

(A¼B) on both sides of ligand X
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(ii) The overlap between A and X on the one hand, X and B on the other one, are
equal (Eq. (22)) in the particular case where A¼B (without changing the
generality of the model).

hAjXi ¼ hXjBi ¼ s; s>0 ð22Þ
(iii) The magnetic centres A and B have the same cationic energy level higher than

the anionic one, as is generally the case for transition metal compounds; the
energy difference between these two levels is 2�E, with E>0, so that Eq. (23)
is obtained.

hAjðT1 þ V1ÞjAi ¼ hBjðT1 þ V1ÞjBi ¼ �ð1 � �ÞE;
hXjðT1 þ V1ÞjXi ¼ �ð1 þ �ÞE; E>0 ð23Þ

� is lower than unity but not necessarily small; �>0 is a very usual case and
�<0 corresponds to the particular case of hydrogen molecule.

(iv) The transfer integrals between jAi and jXi on the one hand, jXi and jBi on
the other one, are equal (Eq. (24)).

hAjðT1 þ V1ÞjXi ¼ hXjðT1 þ V1ÞjBi ¼ �tE; hAjðT1 þ V1ÞjBi ¼ 0;

t>0 ð24Þ

The last equation which states that there is no transfer between A and B but
exclusively between A and X or X and B is a consequence of condition (i).
However, as previously noted, the case hAjðT1 þ V1ÞjBi 6¼ 0 could be intro-
duced in a more general model, without difficulty.

(v) s and t are small compared to unity and t is mainly related to the potential
interaction between the anion and the cation so that Eq. (25) is valid where D0

is defined in Fig. 2.

�tE � �sD0< � sð1 � �ÞE ð25Þ

2. Construction of the Intermediate Cationic States

In the absence of direct overlap and transfer between A and B, any exchange inter-
action between electrons belonging to the magnetic centres A and B must automat-
ically occur through the anionic intermediate bridge X. In a first step we diagonalize
the one-particle Hamiltonian TiþVi (i¼ 1, 2) in the reduced basis fjAi, jXigði ¼ 1Þ
or fjXi, jBigði ¼ 2Þ, separately. The goal of such an operation is to obtain the new
cationic (antibonding) normalized eigenstates jAi and jBi such as given by Eq. (26)
where � and � are real numbers. As we deal with a weak chemical bond between A
and X or X and B, � must remain small. Then, using condition (i) of the previous
subsection, i.e., the normalization condition hAjAi ¼ hBjBi ¼ 1, as well as condi-
tion (ii), the new normalization condition hAjAi ¼ hBjBi ¼ 1 leads to the Eq. (27)

characterized by the solutions 1��¼��s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � �2 þ ð�sÞ2

q
.

jAi ¼ ð1 � �ÞjAi þ �jXi; jBi ¼ �jXi þ ð1 � �ÞjBi ð26Þ

ð1 � �Þ2 þ 2�sð1 � �Þ þ �2 � 1 ¼ 0 ð27Þ
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If we define the new direct overlap S ¼ hAjBi ¼ hBjAi we derive Eq. (28) so
that by reporting in Eq. (27) we have Eq. (29).

S ¼ 2�sð1 � �Þ þ �2>0 ð28Þ

1 � � ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � S

p
ð29Þ

From now, the sign þ will be conventionally adopted. The new energy is given by
Eq. (30).

E ¼ hAjðT1 þ V1ÞjAi ¼ hBjðT1 þ V1ÞjBi ð30Þ
It characterizes a degenerate state; but, if A 6¼B (general case), the system is non-
degenerate. Introducing the definition of jAi and jBi given by Eq. (26) we may
write Eq. (31).

E ¼ �½ð1 � �Þ2 þ �2�ð1 � �ÞE � 2�tð1 � �ÞE ð31Þ
The undetermined parameter � may now be chosen so that E is minimum, i.e.,
owing to Eq. (31), the equation @E=@� ¼ 0 gives after few calculations �
(Eq. (32)).

� ¼ �ð1 � �Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � S

p
ð32Þ

Thus, � and 1�� may show the same sign or opposite signs: if � > 0 (respectively,
� < 0) the state jAi or jBi will be represented by a spatially symmetrical wave
function (respectively, spatially antisymmetrical). In addition, as � is small, 1��
is small too and � is close to unity. Then, using the particular value of � given by
Eq. (32), the ground state energy is described by Eq. (33).

E ¼ �ð1 � �ÞE � 2ð1 � SÞðs½1 � �� � tÞE ð33Þ
As we have t>sð1 � �Þ (cf. Eq. (25)), according to the chosen sign þ (�>0) or
�ð�<0Þ, we shall have E< �ð1 � �ÞE or E> �ð1 � �ÞE. Of course the previous
conditions mainly depend on the nature of ligand X.

We finally define the transfer integral T as shown by Eq. (34).

T ¼ hAjðT1 þ V1ÞjBi ¼ hBjðT1 þ V1ÞjAi ð34Þ

Proceeding as for S and E we derive Eq. (35).

T ¼ �2�tð1 � �ÞE � �2ð1 þ �ÞE ð35Þ
and by using the particular value of � given by Eq. (32) we have Eq. (36) where the
sign þ holds for �>0 and – for �<0.

T ¼ �ð1 � SÞð1 þ �� 2tÞE ð36Þ

As E>0, 1 � S>0, 1þ �>0 whatever the sign of � and t<<1, T is negative.
Thus, before constructing the collective states, it is clear that S, E, and T appear as
the basic parameters of the bond A–X or X–B and finally characterize the collec-
tive states of AXB. In some cases, the cationic orbitals directly overlap and some
kind of direct exchange may occur. Under these conditions, one may use the pres-
ent formalism with slight modifications: jAi and jBi appear as the cationic (bond-
ing) states themselves, S and T are the direct overlap and transfer integrals,
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respectively. Finally, it must be noticed that the potential energy between entities A
and X or X and B may be higher than close to them (for instance in the molecule
H2). In that very particular case � becomes negative (see Fig. 2).

3. Construction of the Collective States

The cationic states jAi and jBi may now give rise to four cationic spin-orbital
states: jA,þi, jA,�i, jB,þi, and jB,�i from which we may construct, in a first
step, four molecular states adapted to the G symmetry group molecular orbitals.
Notably, owing to their behaviour under the interchange of jAi and jBi, we may
call them ‘‘gerade’’ (unchanged) or ‘‘ungerade’’ (sign change). Thus we may write
Eq. (37) for the ‘‘gerade’’ and ‘‘ungerade’’ states, respectively labelled g and u.

jg; �i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 þ SÞ

p ðjA; �i þ jB; �iÞ;

ju; �i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 � SÞ

p ðjA; �i � jB; �iÞ; � ¼ � ð37Þ

The coefficients [2(1�S)]�1=2 are self-evident normalizing factors and � ¼ �
recalls the nature of the corresponding spin state (‘‘up’’ or ‘‘down’’). Then it is
easily shown that the related energies are given by Eq. (38) where E and T are
given by Eqs. (33) and (36), respectively, and the difference of energy between the
‘‘gerade’’ and ‘‘ungerade’’ states is described by Eq. (39),

Eg ¼ E þ T
1 þ S

; Eu ¼
E � T
1 � S

ð38Þ

Eg � Eu ¼ 2
T � SE
1 � S2

ð39Þ

i.e., as �, s, t, and S are small, as shown by Eq. (40).

Eg � Eu � �2�2ð1 þ �ÞE ð40Þ

Thus, Eg � Eu is independent of the sign of �, as expected, remains very small, as �
is small, and negative.

With two electrons and four available spin orbitals, 24 determinantal collective
states may be then built. However, Pauli’s exclusion principle coupled to the notion
of particle indiscernibility contributes to reduce this number to 6. Let us label
jXS;Szi the collective states: X¼U (ungerade) or X¼G (gerade) refers to the sym-
metry of the orbital part with respect to the interchange of jAi and jBi; S and Sz

describe the total spin configuration. We shall denote jP; �;P0; �0i the Slater deter-
minant (Eq. (41)).

jP; �;P0; �0i ¼ 1ffiffiffi
2

p jPðr1Þ�ðs1Þi jP0ðr1Þ�0ðs1Þi
jPðr2Þ�ðs2Þi jP0ðr2Þ�0ðs2Þi

����
���� ð41Þ

It is then easy to understand that a combination of a g-type orbital and a u-type one
allows one to obtain a U-type collective state, whereas combining two g- or two
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u-orbitals gives rise to a G-type orbital. As a consequence we may build the six
following collective states (Eq. (42)).

jU1;1i ¼ ju;þ; g;þi;

jU1;0i ¼
1ffiffiffi
2

p ðju;þ; g;�i þ ju;�; g;þiÞ;

jU1;�1i ¼ ju;�; g;�i;

jU0;0i ¼
1ffiffiffi
2

p ðju;þ; g;�i � ju;�; g;þiÞ;

jGg
0;0i ¼ jg;þ; g;�i;

jGu
0;0i ¼ ju;þ; u;�i ð42Þ

Their spin characters may be simply verified by applying to each of the previous
collective states the convenient total spin operator. Then, introducing the expres-
sions previously obtained for the molecular spin-orbital states, we derive Eq. (43).

jU1;1i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� S2
p jA;þ;B;þi;

jU1;0i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� S2Þ
q ðjA;�;B;þiþ jA;þ;B;�iÞ;

jU1;�1i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� S2
p jA;�;B;�i;

jU0;0i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� S2Þ
q ðjA;þ;A;�i� jB;þ;B;�iÞ;

jGg
0;0i ¼

1

2ð1þ SÞ ðjA;þ;A;�iþ jA;þ;B;�iþ jB;þ;A;�iþ jB;þ;B;�iÞ;

jGu
0;0i ¼

1

2ð1 � SÞ ðjA;þ;A;�i� jA;þ;B;�i� jB;þ;A;�iþ jB;þ;B;�iÞ ð43Þ

Concerning these latter states, it is useful to notice that they may be also expressed
by means of the polar and non-polar normalized (but non strictly orthogonal) states
jGp

0;0i and jGnp
0;0i, respectively, Eq. (44) with conditions being given by Eq. (45).

jGg
0;0i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ S2

p
ffiffiffi
2

p
ð1 þ SÞ

ðjGp
0;0i þ jGnp

0;0iÞ;

jGu
0;0i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ S2

p
ffiffiffi
2

p
ð1 � SÞ

ðjGp
0;0i � jGnp

0;0iÞ ð44Þ

jGp
0;0i ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 þ S2Þ

q ðjA;þ;A;�i þ jB;þ;B;�iÞ;

jGnp
0;0i ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 þ S2Þ

q ðjA;þ;B;�i þ jB;þ;A;�iÞ ð45Þ

1026 J. Curély



4. Hamiltonian Matrix and Energy Spectrum

The last step consists in evaluating the elements of the Hamiltonian matrix in the
new basis fjGg

0;0i, jGu
0;0i, jU0;0i, jU1;1i, jU1;0i, jU1;�1ig. The non-vanishing terms

are those ones existing between states belonging to the same irreducible represen-
tation (irrep) of the orbital (G) and spin (R) symmetry groups. As a consequence
one may expect: (i) diagonal and off-diagonal terms between jGg

0;0i and jGu
0;0i; (ii)

only diagonal terms for the states jUS;Szi with S¼ 0 (Sz¼ 0) and S¼ 1 (Sz¼ 0, �1);
(iii) finally all the diagonal terms of the states jU1;Szi are equal because we deal
with the irrep D1	 3Gu. Under these conditions, the Hamiltonian matrix is given by
Eq. (46) with conditions being given by Eq. (47).

H ¼

E
Gg
0 K 0 0 0 0

K EGu
0 0 0 0 0

0 0 EU
0 0 0 0

0 0 0 EU
1 0 0

0 0 0 0 EU
1 0

0 0 0 0 0 EU
1

0
BBBBBB@

1
CCCCCCA

ð46Þ

E
Gg
0 ¼ hGg

0;0jHjGg
0;0i; K ¼ hGg

0;0jHjGu
0;0i ¼ hGu

0;0jHjGg
0;0i;

EGu
0 ¼ hGu

0;0jHjGu
0;0i; EU

0 ¼ hU0;0jHjU0;0i;
EU

1 ¼ hU1;1jHjU1;1i ¼ hU1;0jHjU1;0i ¼ hU1;�1jHjU1;�1i ð47Þ
At this step we introduce the following quantities (Eq. (48)) with Eq. (49) where
r12¼ jr1 � r2j.

U ¼ hAjhAjU1;2jAijAi ¼ hBjhBjU1;2jBijBi;
C ¼ hAjhBjU1;2jBijAi;
�1 ¼ hAjhBjU1;2jAijBi; �2 ¼ hAjhAjU1;2jAijBi ð48Þ

hW jhXjU1;2jYijZi ¼
ð

dr1 dr2F�Wðr1ÞF�Xðr2Þ
e2

4�"0r12

FYðr2ÞFZðr1Þ ð49Þ

The physical meaning of parameters U, C, �1, and �2 is simply the following
one: (i) U is the Coulomb energy for an electron pair occupying the same site; (ii)
C is the Coulomb energy for two electrons occupying neighbouring sites; (iii) �1 is
the Coulomb self-energy of the exchange charge distribution �eFAðrÞFBðrÞ and is
thus referred to as the exchange integral; (iv) �2 appears as the Coulomb energy
between the exchange charge distribution and an electron charge localized on one
site. In other words �2 is a transfer integral between two cationic orbitals, resulting
from the effective Coulomb potential created by the charge of another electron
involved in the secular problem.

Under these conditions, the matrix elements given by Eq. (47) may be easily
calculated (Eqs. (50)–(52)) where Eg and Eu are given by Eq. (38) and U, C, �1,
and �2 by Eq. (48).

E
Gg
0 ¼ 2Eg þ

UþCþ2�1 þ4�2

2ð1þSÞ2
; EGu

0 ¼ 2Eu þ
UþCþ2�1 �4�2

2ð1�SÞ2
; ð50Þ
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K ¼ U � C

2ð1 � S2Þ
; ð51Þ

EU
0 ¼ Eg þ Eu þ

U � �1

1 � S2
; EU

1 ¼ Eg þ Eu þ
C � �1

1 � S2
ð52Þ

In addition, by diagonalizing the upper 2�2 matrix in Eq. (46), we have the
following eigenvalues (Eq. (53)) as well as the diagonal energy terms Ep and Enp

for jGp
0;0i and jGnp

0;0i, respectively (Eq. (54)).

E �
0;0 ¼ 1

2
E

Gg
0 þ EGu

0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEGg

0 � EGu
0 Þ2 þ 4K2

q� �
ð53Þ

Ep ¼ 2ðE þ ST Þ þ U þ �1

1 þ S2
; Enp ¼ 2ðE þ ST Þ þ C þ �1

1 þ S2
ð54Þ

From the definitions of �2, C, �1, and U given by Eq. (48), we may deduce the
following classification (Eq. (55)), the ‘‘physical’’ values ranging from tenths of eV
to a few eV.

�2 
 C � �1 
 U ð55Þ
The resulting energy level scheme is reported in Fig. 3 and it will be the basis

of the physical discussion in next subsection. Most of the considerations will con-
cern the classification of the Coulomb terms with respect to the difference jEg � Euj
and the relative positions of the levels characterized by the energies EU

1 and E�
0;0,

their difference giving rise to the expression of J.

Comparison with Previous Models and Illustrations

1. Return on the First Hund’s Rule

Let us briefly show that the previous formalism is suitable to establish the first
Hund’s rule. Here, the orbitals describing the states jAi and jBi belong to the same
ion, atom, or molecule. Since they are solutions of the same secular problem, they

Fig. 3. Description of the energy level scheme for the AXB centrosymmetrical model system; the

difference jEg � Euj has been artificially zoomed for clarity
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exhibit vanishing common overlap and transfer integrals. Thus, the eigenvalues of
the upper 2�2 matrix appearing in the Hamiltonian and given by Eq. (53) may be
written as Eq. (56) where E is given by Eqs. (30) and (31) and which must be
compared to EU

0 and EU
1 (given by Eq. (52)), respectively close to 2E þ U � �1 and

2E þ C � �1. In addition, for an atom, �2¼ 0 and, for a molecule or a polyatomic
ion, �2 6¼ 0.

Eþ
0;0 � 2E þ U þ �1 þ

4�2
2

U � C
; E�

0;0 � 2E þ C þ �1 �
4�2

2

U � C
ð56Þ

Clearly, owing to the previous discussion concerning the order of magnitude of
the Coulomb terms, the ground level corresponds to the triplet state and appears to
be stabilized by about 2�1 (�eV for intra-atomic exchange) with respect to the first
excited level. A similar argument may prevail whenever some orbital degeneracy
occurs. The ferromagnetic interaction based on the Coulomb exchange integral �1

is often called Heisenberg exchange.
The Pauli’s exclusion principle states that two electrons cannot occupy the same

spatial position, when showing the same spin, since due to its antisymmetry prop-
erty, the corresponding wave function then vanishes. This function must vary
smoothly, as required for avoiding too large kinetic energy. Thus, it keeps weak
values when two electrons characterized by parallel spins are not enough sepa-
rated. This result also concerns the probability density. As a result a hole appears
in the up (down) spin electron distribution in the vicinity of one of them (Fermi
hole). As a consequence, the larger distance thus maintained between similar spin
electrons explains their lower Coulomb energy, as compared to antiparallel spin
electrons.

2. Molecular Orbital Model

In that case, the Coulomb interaction is assumed to play a secondary role. Then, the
scheme of energy levels appearing in Fig. 3 becomes that one given in Fig. 4.
Clearly, the ground state is one of the singlets jg;þ; g;�i or ju;þ; u;�i owing
to the relative stability of the orbital states jg; �i and ju; �i (G-type collective
state). The first excited state is the triplet jU1;Szi, with Sz¼ 0, �1.

This approach is relevant when the overlap between orbitals belonging to
neighbouring sites is large (for instance in C–C covalent bonds). In case of orbital
degeneracy, two low-lying states jg; �i or ju; �i are available for the electron pair
which may then form a singlet or a triplet. Of course, the first Hund’s rule tells us
that the triplet is more stable, as often encountered.

Fig. 4. Description of the energy level scheme for the AXB centrosymmetrical model system when

Coulomb interactions are negligible (molecular orbital model)
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3. Comparison with Anderson Model [4]

Anderson model of the isotropic exchange has been proposed for extended systems
like oxides and fluorides. In a first step, Anderson builds up the molecular orbitals
of the A–B system in a triplet state. Then, he determines the orthogonal magnetic
orbitals (OMO), as defined in Eq. (5). These functions are the Wannier functions
(the symmetry group being the crystal translation group). From the ground state
(with one unpaired electron per magnetic orbital), it appears a singlet state and a
triplet one. One singlet state arises from the excited configurations and may couple
with the low-lying singlet state, thus allowing its stabilization. We have seen
that the total exchange constant is such as: J ¼ Jmm0ðpotentialÞ þ Jmm0ðkineticÞ, where
Jmm0ðpotentialÞ and Jmm0ðkineticÞ, are given by Eqs. (13) and (18). The link between the
transfer integral bmm0(s) defined by Eq. (12) and our model is given by Eq. (57)
where T and �2 are given by Eqs. (34) and (48).

bmm0 ðsÞ ¼ �2 þ T ð57Þ

In addition, the Coulomb energy U appearing in Anderson model corresponds
to the quantity U�C in our model. Taking into account the conventional writing of
the exchange Hamiltonian (Hex¼�2JSA �SB) we may write Eq. (58).

JAnd ¼ �1 �
2ð�2 þ T Þ2

U � C
ð58Þ

From the eigenvalues of the upper 2�2 matrix in the Hamiltonian given by
Eq. (53), we obtain the lowest eigenvalue (Eq. (59)).

E�
0;0 � 2E þ C þ �1 �

4ð�2 þ T Þ2

U � C
ð59Þ

We must now compare this value to EU
1 written in the vanishing-S limit, i.e.,

Eq. (60).

EU
1 � 2E þ C � �1 � 2E as C � �1 ð60Þ

From the conventional writing of the exchange Hamiltonian we have now
�2J ¼ EU

1 � E�
0;0, i.e., Eq. (61) where J is derived from our model.

JAnd ¼ �1 �
2ð�2 þ T Þ2

U � C
¼ J ð61Þ

4. Comparison with Hay-Thibeault-Hoffmann (HTH) Model [23]

In spite of the fact that the method of calculation is somewhat different, the HTH
model is very close to Anderson one. This model may be seen as the reduction of
the homo-(poly)nuclear Anderson model to the homo-(bi)nuclear case. The HTH
model also focuses on the two-singly occupied magnetic orbitals in the triplet state
’þ and ’� (cf. Eq. (5)), with the energies "þ and "�. These authors introduce
orthogonal magnetic orbitals (OMO) and find J (with, as in Anderson model,
Hex¼�2JSA � SB) (Eq. (62)) where we have the following correspondence with
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our model Kab¼ �1, Jaa� Jab¼U�C, Kab being the exchange integral, and,
Jaa and Jab, the one- and two-centre Coulomb repulsion integrals.

JHTH ¼ Kab �
ð"þ � "�Þ2

2ðJaa � JabÞ
ð62Þ

Let us make the following comments about Eq. (62): (i) the ground state will be
a triplet for the degenerate case "þ ¼ "�(J¼Kab, with Kab>0); (ii) the triplet state
is destabilized with respect to the singlet state if "þ 6¼ "�; (iii) the difference
jET;0 � ES;0j can become vanishingly small for certain values of the integrals and
energies which describe the exchange coupling process, but in some cases the
paramagnetic centres remain exchange coupled; (iv) for certain values of the inte-
grals and energies, the singlet state may become the ground state [24].

The HTH model derives from our general framework by: (i) taking into account
the polar state; (ii) neglecting the overlap integral S. This situation is thus formally
analogous to that one which prevails in the establishment of the first Hund’s rule.
The last correspondence with our model concerns the quantity "þ � "�: we
have "þ � "� ¼ 2ð�2 þ T Þ, where T does not a priori vanish between orbitals which
are no longer distinct eigenfunctions of the same one-particle effective
Hamiltonian. As a consequence, using the same conventional writing of the exchange
Hamiltonian as Anderson’s one, we have Eq. (63) where J is derived from our model.
Thus, the exchange coupling shows a ferromagnetic contribution (basically of
Coulomb-type) and an antiferromagnetic one (mixing orbital and Coulomb processes).

JHTH ¼ JAnd ¼ J ð63Þ
Here the important novelty is that the antiferromagnetic contribution appears

even in the case of vanishing overlap. It is related to the possibility of virtual
excitation of an electron from one site to another one, without simultaneous reverse
motion of the other electron (formation of a polar state). It results from an ele-
mentary perturbation theory that such an admixture necessarily pushes down the
lowest non-disturbed energy level. In the present framework, since only two or-
bitals are involved in the mechanism, such polar states are possible only with anti-
parallel spins. As a consequence, this admixture favours the singlet state.

When orthogonality occurs because the orbitals involved in the mechanism
are solutions of the same one-particle Hamiltonian, T may vanish. In practice, this
situation is not often encountered: (i) the intervening orbitals are primarily con-
sidered in their own idealized environments and are solutions of distinct
Hamiltonians; (ii) the effects of the surrounding extra atoms (potential energy
contribution, symmetry lowering) introduced when synthetizing the molecule are
generally neglected. However, even if T vanishes, �2 remains and favours an
antiferromagnetic coupling.

5. Kahn-Briat (KB) Model [25]

Kahn and Briat have investigated many molecular systems involving metal cations
linked by various organic bridges. The situation is at the opposite of that one which
supports the molecular orbital model. The overlap and transfer integrals are small
now and the Coulomb integrals must no longer be ignored.
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Kahn and Briat start from the observation that, in this limit, the states jGg
0;0i and

jGu
0;0i are nearly degenerate. Thus, the strong off-diagonal term K in the upper 2�2

matrix associated with the Hamiltonian (cf. Eq. (46)) strongly mixes them, then
giving the eigenstates jG �

0;0i � jGg
0;0i � jGu

0;0i, which appear to be respectively very
close to the polar and non-polar states jGp

0;0i and jGnp
0;0i (cf. Eq. (44) in the vanish-

ing-S limit). Kahn and Briat exclude the polar state due to its very high energy. As
a consequence, the low-lying states are the non-polar triplet and singlet states, i.e.,
jU1;Szi (with Sz¼ 0, � 1) and jGnp

0;0i. Using the conventional writing of Eq. (1) for
the exchange part, also adopted in the KB model, we may immediately derive the
difference �J ¼ EU

1 � E�
0;0 (up to second order in S and T ), with EU

1 and E�
0;0,

respectively, given by Eqs. (52) and (53) (Eq. (64)).

J ¼ 2ð�1 � CS2Þ þ 4SðT � SEÞ � 4
½�2 þ T � SðC þ �1Þ�2

U � C
þ � � � ð64Þ

After a convenient translation with the KB notation [1, 3, 25], it is easy to show that
Eq. (64) exactly coincides with the result obtained by these authors. The first
contribution finds its origin in the electron–electron Coulomb interaction U12.
Since �1 and C have been shown to be of the same order of magnitude, �1 dom-
inates CS2. The Coulomb contribution remains positive and favours a ferromag-
netic coupling. In the second term, the quantity T � SE is proportional to the
quantity Eg � Eu defined by Eq. (39). It emphazises the key role of the overlap
in the stabilization of the singlet state. As it is negative (cf. Eq. (40)), this term
added to the third one describes the antiferromagnetic contribution. Following
Kahn and Briat we define (Eq. (65)) so that J is given by Eq. (66).

J"" ¼ 2ð�1 �CS2Þ; J"# ¼ 4SðT �SEÞ�4
½�2 þT �SðCþ�1Þ�2

U�C
þ�� � ð65Þ

J ¼ J"" þ J"# ð66Þ
The ferromagnetic contribution J"" dominated by �1 is actually a misadventure of
the first Hund’s rule (Fermi hole), while the antiferromagnetic one J"# is mainly
associated with the prohibition for the electrons to occupy the same orbital with the
same spin. Both are demonstrations of the Pauli’s exclusion principle. The first
term of J"# vanishes with the overlap, while the second one remains a residual
contribution. Thus, in case of orbital orthogonality, we asymptotically deal with the
ferromagnetic contribution only.

This has been an important axis of research to elaborate high-spin molecular
ferromagnets [26–36]. In this respect, a strategy has been proposed to favour
ferromagnetic interactions between nearest magnetic centres, based on the concept
of orthogonality of the magnetic orbitals [26–29]. It may be summarized as fol-
lows. The starting point concerns an A–B pair, with nA unpaired electrons on A
occupying the a� magnetic orbitals, and nB unpaired electrons on B occupying the
b� magnetic orbitals. a� (respectively, b�) transforms as Ga

� (respectively, �b
�), the

irreducible representation (irrep) of the point symmetry group characterizing
the A–B pair. The magnetic orbitals are orthogonal if Ga

� 6¼ Gb
� for any couple (�, �).

As a consequence, the ground state has the highest spin multiplicity (nAþ nB)=2.
Because of the orthogonality of the magnetic orbitals a� and b�, it is not possible
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to form low-energy molecular orbitals, delocalized on the whole A–B pair, for
which the ‘‘magnetic’’ electrons would pair. Under these conditions, Hund’s rule
holds and one obtains a parallel spin arrangement for the lowest energy state. This
strategy has been successfully tested on the copper(II)-orthosemiquinone entity, a
copper(II)-vanadyl(II) complex, and a Cr(III)Ni(II)3 tetranuclear species [26].

6. Other Models Illustrating the Charge Transfer Process

Models for organic ferromagnets with unpaired electrons in non-bonded orbitals
have been proposed by Mataga and Ovchinnikov [30]. A model using � electrons
in a mixed (. . .DADADA. . .) stack has been proposed by Mc Connell [37] and
extended by Breslow [38], in the context of charge transfer complexes. It is char-
acterized by the introduction of excited (anomalously polarized) configurations in
the Hamiltonian basis, similarly to the polar states introduced in our model. From
that point of view, they do not basically differ from that scheme based on the
energy lowering term 4(�2þT )2=(U–C) involving the transfer integral.

In Anderson model (see Fig. 5, case (a)), the excited configuration is assumed
to be a singlet whereas the ground starting configuration is a triplet, thus contribut-
ing to antiferromagnetism. Conversely, Mc Connell has pointed out that molecules
showing a triplet ground state might be used to construct organic ferromagnets
[37]. In this respect, Mc Connell considers an ionic molecular crystal DþA� char-
acterized by an alternation of species Dþ and A�, and formed with: (i) a donor
molecule D whose neutral ground state is a triplet and a singlet state acceptor

Fig. 5. Various examples of charge transfer models proposed by Mc Connell [37], Breslow [38], and

Torrance et al. [39] for explaining ferromagnetic molecular ground states
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molecule A (case (b1)); (ii) a donor molecule D characterized by a neutral singlet
ground state and an acceptor A showing a neutral triplet ground state (case (b2)). In
both cases a charge transfer mechanism is involved, thus leading to a charge-
transferred diradical characterized by a triplet ground state, keeping the spins
parallel on both species. The charge transfer can go in either direction: the spin
on a given A� is parallel to the spins on both neighbours Dþ so that ferromagnetic
domains may appear in the whole crystal. If the charge transfer is not only linear,
one can expect 2D or 3D domains. Of course, this model does not work if both D
and A show a triplet ground state.

A simple change has been proposed by Breslow [38]: the triplet species is a
dication. In Fig. 5 case (c) shows a version in which species M has fully donated an
electron to species N, making the M

þ
�=N

�� pair. But the charge transfer study indi-
cates that there is a contribution of M2þ=N2� to the structure. If M2þ has a triplet
ground state, N2� being a singlet, the charge transfer then leads to a ferromagnetic
coupling. This mechanism also works if N2� is the triplet and M2þ the singlet.

Later on, Torrance et al. [39] have proposed another model for a segregated
stack of radical ions causing a ferromagnetic spin alignment. In this respect, they
consider a pair of adjacent radical anions M

��
1 and M

��
2 , each species having an

unpaired electron delocalised in a � orbital over an aromatic molecule. The ground
state of the two molecule dimer may be written as M

��
1 M

��
2 and may be either a

singlet or a triplet. The excited state is the one induced by the charge transfer of an
electron from one molecule to its neighbour, i.e., M2�

1 M0
2 or M0

1M2�
2 . The effect of

the overlap is to mix ground and excited states. When synthetizing the molecule
the aim is to make a triplet with the lowest excited state. This occurs via Hund’s
rule in case of orbital degeneracy: the two unpaired electrons in the dianion must
go into different (but degenerate) orbitals, with their spins parallel. In the case of an
aromatic molecule, the orbital degeneracy is caused by the high molecular sym-
metry; in another molecule, it may arise from appropriate non-bonded orbitals (see
Fig. 5, case (d)).

Part of the difficulties arises from the triplet state molecular engineering [40].
As already pointed out incidentally, stabilizing a triplet state generally requires
special symmetry properties. These properties are not often met in free molecules
due to their own conformation. Electron–phonon coupling itself (Jahn-Teller
effect) may be quite efficient in reducing the degeneracy of the available orbitals.
In addition, the crystallization process may contribute to reduce it again. Although
strict degeneracy or orbital orthogonality is not required, molecular crystals show-
ing ferromagnetic couplings are not numerous [31–36].

Conclusion

In this article we have developed a general model in order to describe the super-
exchange mechanism for the centrosymmetrical system AXB, where A and B are
magnetics centres and X is a common bridging ligand. For clarity we have con-
sidered the degenerate case A¼B, where A or B is described by a cationic d-orbital
and X by a p (or s) ligand orbital. Of course, the general case A 6¼B may be
introduced without difficulty. In addition the orbitals describing the states jAi
and jBi do not overlap but the important case of overlap between A and B may
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be also taken into account. However, in both cases, the overlap between jAi and jXi
or jXi and jBi is always considered as weak.

Under these conditions, the general treatment which has been set on has
allowed to construct an energy level spectrum and the corresponding energies have
been derived. Notably, from the singlet-triplet splitting of the low-lying states, a
closed-form expression of the exchange energy J may be expressed vs. key molec-
ular integrals. The restriction of the present model to the most important cases
previously published allows one to exactly retrieve the J expression respectively
derived by Anderson on the one hand, Hay-Thibeault-Hoffmann on the other, or
finally by Kahn and Briat, thus bringing a strong validation to our model.

Important generalizations may be brought. Notably, spin polarization effects
may be introduced for the fragment AXB, as well as the spin-orbit coupling. In
particular, as this latter contribution must remain small (see article I), the formal-
ism may be slightly altered by replacing the zeroth-order magnetic orbitals by new
magnetic orbitals taking into account the spin-orbit perturbation. However, the
most important key point concerns the possible generalization of our formalism
to any kind of molecule or polyatomic ion.
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